
135

0195-928X/02/0100-0135/0 © 2002 Plenum Publishing Corporation

International Journal of Thermophysics, Vol. 23, No. 1, January 2002 (© 2002)

An Equation of State for the Hard-Sphere Chain Fluid
Based on the Thermodynamic Perturbation Theory of
Sequential Polymerization1

1 Paper presented at the Fourteenth Symposium on Thermophysical Properties, June 25–30,
2000, Boulder, Colorado, U.S.A.

M. S. Yeom,2 J. Chang,2 and H. Kim2, 3

2 School of Chemical Engineering and Institute of Chemical Processes, Seoul National
University, Shinlim-dong, Kwanak-ku, 151-742 Seoul, Korea.
3 To whom correspondence should be addressed. E-mail: hwayongk@snu.ac.kr

New equations of state for freely jointed hard-sphere chain fluids are developed.
The equations of state are based on the thermodynamic perturbation theory.
The new equations of state use the contact values of the radial distribution
function (RDF) for monomer–dimer mixtures, which is derived from the mul-
tidensity Ornstein–Zernike theory. These RDFs are composed of a monomer
reference term, the Carnahan–Starling or the Percus–Yevick expression, and an
additional bond contribution. These equations of state are then extended to real
fluids. To calculate the phase equilibrium properties of nonassociating chain
fluids, a dispersion contribution is added to the repulsive hard-chain reference
term. With the new equations of state of chain fluids supplemented with the
dispersion term, the vapor pressures and the coexisting densities of several real
fluids are calculated.
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1. INTRODUCTION

Equations of state are used in engineering practice to predict the thermo-
dynamic properties of fluids. Numerous studies have been carried out to
develop an accurate equation of state for the thermodynamic properties of
fluids. In recent years there have been several equations of state developed
for hard-sphere chain fluids based on the rigorous off-lattice statistical



mechanical theory. Accurate knowledge of the thermodynamic properties
of the hard-sphere fluids is important since it could serve as a convenient
reference system in developing perturbation theory for more realistic model
fluids.
Some years ago, Wertheim formulated the thermodynamic perturba-

tion theory (TPT) and the multidensity Ornstein–Zernike (MOZ) integral
equation theory for associating fluids [1, 2], and equations of state for
hard diatomics [3] and freely jointed hard-sphere chain fluids [4, 5] were
developed. Chapman et al. [6, 7] extended Wertheim’s TPT theory to mix-
tures and real fluids, which is referred to as the statistical associating fluid
theory (SAFT). Chang and Sandler [8, 9] developed the TPT-D theory for
hard chain fluids using the structural information of a dimer fluid as an
intermediate reference system. Huang and Radosz [10, 11] have applied
SAFT to a variety of real fluids including polymers.
The objective of this work is to derive an equation of state for the

freely jointed hard-sphere chain fluid within the framework of the TPT and
MOZ theories. The compressibility factor of chain fluids predicted by the
new equations of state is compared with Monte Carlo simulation results.
Then this equation of state is extended to real fluids.

2. THEORY

We consider a potential model of the form

f(r, W1, W2)=fR(r, W1, W2)+C
A

C
B
fAB(r, W1, W2) (1)

where fR is the potential of repulsive interactions of the reference fluid,
r is the vector between the center of molecule 1 and that of molecule 2,
Wi denotes the orientation of molecule i, and fAB is the potential of attrac-
tive interactions between associating sites.

2.1. Residual Helmholtz Energy

In the TPT theory, the Helmholtz energy of chain fluids is written

A
NkT

=
A ideal

NkT
+
AmonoR

NkT
+
Achain

Nkt
(2)

where N is the total number of chains, T is the temperature, k is Boltz-
mann’s constant, and A ideal, AmonoR , and Achain are the Helmholtz energies of
ideal, reference monomer, and chain contributions, respectively.
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In the present formulation for the thermodynamic perturbation theory
of sequential polymerization, we consider a system of mN associating hard
spheres that are to form N hard-sphere chains of length m. In the manner
of the sequential polymerization, a dimer is formed from two monomers,
a trimer is formed from a dimer and a monomer, etc., and a m-mer from
a (m−1)-mer and a monomer. In the context of the TPT theory, the
Helmholtz energy change associated with the kth polymerization step is
approximated by −kT ln g(k, 1), where g(k, 1) is the contact value of the
radial distribution function between an end segment of a k-mer and a
monomer. Strictly speacking, this free energy change would vary with the
composition of all intermediate chains during the polymerization as well
as their lengths. For simplicity if we neglect such intricate effects of the
composition on g(k, 1), the Helmholtz energy change for the overall
polymerization can be written

Achain

NkT
=−ln[g(1, 1) g(2, 1) g(3, 1) · · · g(m−2, 1) g(m−1, 1)] (3)

Further, we assume that g(k, 1) is independent of k for k \ 2:

g(2, 1)=g(3, 1)=· · ·=g(m−2, 1)=g(m−1, 1) (4)

Equation (4) relies on the fact from the MOZ integral equation theory that
the segment–segment correlation function at contact depends only on the
number of segments bonded to the two segments, not on their locations or
chain length [12]. Also, from the simulation study by Kumar et al. [13], it
was shown that g(k, 1) is nearly insensitive to k when k \ 4 and is nearly
the same as g(2, 1) when k \ 2.
Then it follows that

Achain

NkT
=−ln g(1, 1)−(m−2) ln g(2, 1) (5)

where g(1, 1) is equal to gM(s) and g(2, 1) is identified with the correlation
function of a monomer–dimer mixture evaluated at the bond length.
Chang and Kim [12] and Chiew [14, 15] obtained the same expres-

sions for the contact values of the correlation functions from the MOZ and
PY theory and calculated the correlation functions for the region beyond
the hard core from a set of integral equations. The resulting expression for
the contact values of the correlation functions of monomer–dimer mixture
is written in the following form:

g(2, 1)=gM(s)−
1

4(1−g)
(6)
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We obtain two expressions for the RDF of monomer–dimer mixtures from
the two expressions for the RDF of hard spheres, the Percus–Yevick and
the Carnahan–Starling expressions, respectively [16].

gMDPY (s)=
1+(g/2)
(1−g)2

−
1

4(1−g)
(7)

gMDCS (s)=
1−(g/2)
(1−g)3

−
1

4(1−g)
(8)

Substituting Eqs. (7) and (8) into Eq. (5), we obtain new expressions for the
Helmothz free energy that account for the chain contribution in the
sequential polymerization.

Achain

NkT
=−ln gM(s)−(m−2) ln gMD(s) (9)

2.2. Equation of State

The compressibility factors are obtained by differentiating the Helmholtz
energy with respect to the density. As is the case for the Helmholtz energy,
the compressibility factor is written as a sum of separate contributions. For
the compressibility factor we have

Z=mZmonoHS +Z
chain (10)

The compressibility factor of a monomer hard-sphere fluid ZmonoHS is given
by the Carnahan–Starling equation of state,

ZmonoHS =
1+g+g2−g3

(1−g)3
(11)

We obtain two equations of state from two expressions for gMD(s):

Zmodel 1TPT–MOZ=m
1+g+g2−g3

(1−g)3
−
1+g− 12 g

2

(1−g)(1− 12 g)
−(m−2)

g(3+g)
(1−g)(g+1)

(12)

Zmodel 2TPT–MOZ=m
1+g+g2−g3

(1−g)3
−
1+g− 12 g

2

(1−g)(1− 12 g)
−(m−2)

g(g2+2g−9)
(1−g)(g2−3)

(13)

where models 1 and 2 correspond to Eqs. (7) and (8), respectively. These
new equations of state for hard-sphere chain fluids are referred to as
TPT–MOZ equations in the following discussion.
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3. APPLICATION TO REAL FLUIDS

3.1. Dispersion Contribution

To calculate the phase equilibrium properties of nonassociating chain
fluids, a dispersion contribution is added to the repulsive hard-chain refer-
ence term (Zmodel 2TPT–MOZ). The dispersion term is a power series initially fitted
by Alder et al., and universal parameters used in this work have been
refitted to accurate thermophysical properties for argon by Chen and
Kreglewski [17]

3.2. Molecular Parameters

For nonassociating chain molecules, there are three molecular param-
eters, segment number (m), segment volume (v00), and segment–segment
interaction energy (u0), to be determined in these equations of state for
pure fluids [10, 11]. Molecular parameters are determined by fitting
density and vapor pressure data for liquids and pressure–volume data for
gases at a constant temperature.

4. RESULTS AND DISCUSSION

We compare the simulation results for the compressibility factor for
hard-sphere chain fluids with the predictions of TPT, TPT-D, and the two
models [Eqs. (12) and (13)] developed in this work. The average relative
errors for the compressibility factor are listed in Table I. The simulation
results of Chang and Sandler [8] and those of Escobedo and de Pablo [18]
are used for comparison. As the chain length increases, the discrepancy
between the predictions of the theories and simulation data becomes larger.
Figure 1 shows the compressibility factor for hard-sphere chain fluids of

Table I. Comparison of the Compressibility Factors of Hard-Sphere Chain Fluids from
Various Theories

AAD (%)a

TPT TPT-D Model 1 Model 2

16-mer 9.1185 2.7750 6.9690 2.4113
32-mer 9.2377 3.1757 8.0590 2.1834

a AAD(%)=; | simulation−predictionsimulation |×100.
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16- and 32-mers. For the 16-mer fluid, all theories are satisfactory,
although the TPT theory overestimates the simulation results at low densi-
ties and Model 1 slightly overestimates the simulation results at interme-
diate and high densities. The overestimations from Model 1 are because of
the underestimation of the RDF. The difference between the TPT-D model
and Model 2 is very small for the 16-mer fluids, All theories are reasonably
accurate, in particular, TPT-D and Model 2. The TPT-D and Model 2 can
reproduce the MC results within 3%, Model 1 within about 7%, and TPT
within about 9%.
In Fig. 1 predictions of the theories and simulation results for the

compressibility factors of the hard-sphere fluids of 32-mers are also
compared. Figure 1 shows the same rank for the accuracy of the theories
for the compressibility factors as is found for shorter chain fluids. All
theories overestimate the compressibility factor, in particular, TPT and
Model 1. Model 2 reproduces the simulation results of the compressibility
factors of 32-mer fluids to within about 2%, TPT-D about 3%, Model 1
about 8%, and TPT about 9%. The above comparison of the compressi-
bility factors of hard chain fluids by various theories indicates that Model 1

Fig. 1. The compressibility factor of hard-sphere 16- and 32-mer fluids.
The symbols are the MC simulation data of Chang and Sandler [8] and
Escobedo and Pablo [18], and the lines are from the theories.
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Fig. 2. Predicted liquid densities of pentane. The symbols are the
experimental data [19], and the lines are from the theories.

is of nearly the same accuracy as the TPT theory, and Model 2 is compar-
able to or slightly better than the TPT-D theory. With the new equation of
state of chain fluids supplemented with the dispersion term, the vapor
pressures and the coexisting densities of several real fluids are calculated. In
Figs. 2 and 3 the predictions of the theories are compared with experimen-
tal data [19] for the liquid densities of pentane and hexane. For pentane,
all theories are satisfactory, although all theories overestimate the experi-
mental data at low temperatures and underestimate them at high tempera-
tures. SAFT can reproduce the experimental data to within about 3%, and
our equation to within 3%. For hexane, all theories also overestimate the
experimental data at low temperatures and underestimate them at high
temperatures. SAFT can reproduce the experimental data to within about
3%, and our equation to within about 2%.

5. CONCLUSIONS

Equations of state for freely jointed hard-sphere chain fluids based on
the thermodynamic perturbation theory of sequential polymerization are
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Fig. 3. Predicted liquid densities of hexane. The symbols are the exper-
imental data [19], and the lines are from the theories.

developed. We obtain new expressions for the chain contribution term in
the TPT equation of state by using the contact values of the radial distri-
bution function of monomer–dimer mixtures as an intermediate reference
system. These expressions for the contact values are adopted from the
multidensity Ornstein–Zernike integral equation theory. We obtain equa-
tions of states for hard-sphere chain fluids upon using the idea of sequen-
tial polymerization and the RDFs of the monomer–dimer mixture. The
compressibility factors of chain fluids predicted by the equations of state
are compared with MC simulation results, and reasonably good agreement
between the theories and simulations is found. We then extend these
equations of state to real fluids. To calculate the phase equilibrium prop-
erties, the dispersion term is added to the repulsive hard-chain reference
term in the Alder et al. equation. With the new equations of state of chain
fluids supplemented with the dispersion term, the vapor pressures and
coexisting densities of several real fluids are calculated. Again, we find
good agreement between the predictions of the theory and the experimen-
tal data.
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